当前位置:网站首页产品展示污水处理设备食品深加工污水处理设备 > 山西省朔州市食品加工厂污水处理设备厂家
山西省朔州市食品加工厂污水处理设备厂家

山西省朔州市食品加工厂污水处理设备厂家

简要描述:山西省朔州市食品加工厂污水处理设备厂家
一体化污水处理设备是将一沉池、I、II级接触氧化池、二沉池、污泥池集中一体的设备,并在I、II级接触氧化池中进行鼓风曝气,使接触氧化法和活性污泥法有效的结合起来,同时具备两者的优点,并克服两者的缺点,使污水处理水平进一步提高。

所属分类:食品深加工污水处理设备

更新时间:2019-08-27

访问次数:452

详细说明:

山西省朔州市食品加工厂污水处理设备厂家

山西省朔州市食品加工厂污水处理设备厂家
 

污水处理工艺流程分析

 

在这十年中,MBR体系已经在解决我们生活中的污水、医院中的废水、垃圾在渗出的液体、工业废水和所有浓度比较高、不容易降解的工业废水在发挥了重要作用。MBR需实行预处理,大多数是与其他工艺相联合的形式。

 

2.1 MBR-厌氧/缺氧交替工艺

 

交替式厌氧/缺氧-膜生物反应器(A-A/A-M)工艺可提高生活污水脱氮除磷效果。该工艺由一个交替缺氧/厌氧反应池和内置膜过滤单元的好氧池组成。通过好氧池底部回流污泥流向的改变,使得两个独立反应器(A和B)内依次形成缺氧和厌氧环境,实现同步厌氧释磷、缺氧反硝化脱氮,及好氧吸磷、硝化、去除BOD等过程。好氧反应器进行连续曝气减缓膜污染的进程,延长清洗周期。该工艺对COD、TN、TP的平均去除率分别达到93%、67.4%和94.1%。

 

2.2 A2/0 + MBR工艺

 

A2/0+MBR技术是把过去的A2/0技术与MBR技术相结合,使它们的优点相互弥补,相互配合,能够有效的排除主要污染物质。A2/0+MBR体系中发生的高污泥浓度不但减少了水力停留时间,且具有同步硝化反硝化、反硝化除磷等阶段,就说是在C/N较低的前提下,也能确保优良的脱氮除磷效应。运用A2/0+MBR工艺处置市区污水,试验证明:MBR池的污泥浓度达8.2g/L,CODCr、TN与氨氮的去除率分别达93.0%、78.5%和94.7%。

 

2.3 PAC-MBR工艺(粉末活性炭-膜生物反应器)

 

PAC-MBR组合工艺是指将PAC投加至MBR污泥混合液中污泥絮体以PAC颗粒为骨架,吸附和絮凝污泥混合液中微细胶体、胞外聚合物EPS(Extraeelluar Polymeric substanees )、溶解性有机物等,使污泥颗粒粒径变大,抗压能力增强,膜面沉积层孔隙率提高,压密性降低,从而降低膜过滤阻力和膜污染程度,提高膜通量。同时,由于PAC污泥絮体的吸附和生物降解作用协同,形成生物活性炭,使有机污染物降解去除率得到提高,PAC得以再生。MBRPA和MBR工艺处理生活污水的对比实验,结果表明,由于PAC的存在大大改善了膜污染状况,从而延长了膜清洗周期。

 

3

MBR存在的问题

 

MBR突出的特征是占地面积小,耐冲击负荷,出水水质优良,自动化程度高容易管理,但MBR工艺现在仍然存在的某些问题。

 

3.1 处理能力降低的风险

 

MBR通常在恒定通量下进行,为了持续运行要求MBR不能超过极限通量,超过这个极限会产生膜污染,那么多余的水就无法通过膜孔径,产水率下降。很多MBR工艺在实际运行过程中随着时间的积累,其处理能力不断下降,很多水厂的处理能力甚至不足设计之初的50%。美国环保局认为,如果MBR工艺的进水峰值流量超过平均流量的1.5~2倍,就需设置流量调节池,或者备有大量的膜组件以保证出水水质达标。

 

3.2 投资成本与运行成本较高

 

如今,膜组件是MBR处理系统中主要组成部分,同时也是技术含量及价值大的部分,其成本占据整体设备投入的多部分。此外,MBR需要先进的设备以满足其自动化的要求,这也增加了其成本。浸没式MBR工艺,需加大曝气强度,造成能耗上升。另外,膜组件寿命有限,达到一定使用年先后需更换膜组件。据分析,国内MBR投资成本在2000~2500元/m3,是传统活性污泥法项目建设成本的1. 5倍左右。 

 

3.3 预处理与自控系统设计不足而产生的风险

 

通常MBR工艺需先经过预处理再进入膜处理反应器内。预处理不到位或者不经预处理便进入膜反应器内必会产生严重的后果。MBR工艺自动化程度比传统活性污泥工艺高很多,膜组件需定期清洗、组


 

一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 
 

二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。 
 

三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂率法,活性炭吸附法,离子交换法和电渗分析法等。 
 

整个过程为通过粗格删的原污水经过污水提升泵提升后,经过格删或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被后利用。 
 

 

 

各个处理构筑物的能耗分析

 

 

 

1

污水提升泵房

 

 

进入污水处理厂的污水经过粗格删进入污水提升泵房,之后被污水泵提升至沉砂池的前池。水泵运行要消耗大量的能量,占污水厂运行总能耗相当大的比例,这与污水流量和要提升的扬程有关。

 

 

2

沉砂池

 

 

沉砂池的功能是去除比重较大的无机颗粒。沉砂池一般设于泵站前、倒虹管前,以便减轻无机颗粒对水泵、管道的磨损;也可设于初沉池前,以减轻沉淀池负荷及改善污泥处理构筑物的处理条件。常用的沉砂池有平流沉砂池、曝气沉砂池、多尔沉砂池和钟式沉砂池。 

 

沉砂池中需要能量供应的主要是砂水分离器和吸砂机,以及曝气沉砂池的曝气系统,多尔沉砂池和钟式沉砂池的动力系统。 

 

 

3

初次沉淀池

 

 

初次沉淀池是一级污水处理厂的主题处理构筑物,或作为二级污水处理厂的预处理构筑物设在生物处理构筑物的前面。处理的对象是SS和部分BOD5,可改善生物处理构筑物的运行条件并降低其BOD5负荷。初沉池包括平流沉淀池,辐流沉淀池和竖流沉淀池。 

 

初沉池的主要能耗设备是排泥装置,比如链带式刮泥机,刮泥撇渣机,吸泥泵等,但由于排泥周期的影响,初沉池的能耗是比较低的。 

 

 

4

生物处理构筑物

 

 

污水生物处理单元过程耗能量要占污水厂直接能耗相当大的比例,它和污泥处理的单元过程耗能量之和占污水厂直接能耗的60%以上。活性污泥法的曝气系统的曝气要消耗大量的电能,其基本上是运行的,且功率较大,否则达不到较好的曝气效果,处理效果也不好。氧化沟处理工艺安装的曝气机也是能耗很大的设备。生物膜法处理设备和活性污泥法相比能耗较低,但目前应用较少,是以后需要大力推广的处理工艺。 

 

 

5

二次沉淀池

 

 

二次沉淀池的能力消耗主要是在污泥的抽吸和污水表明漂浮物的去除上,能耗比较低。 

 

 

6

污泥处理

 

 

污泥处理工艺中的浓缩池,污泥脱水,干燥都要消耗大量的电能,污泥处理单元的能量消耗是相当大的,这些设备的电耗功率都很大。 

 

 

针对各个处理构筑物的节能途径

 

 

 

1

污水提升泵房

 

 

污水提升泵房要节省能耗,主要是考虑污水提升泵如何进行电能节约,正确科学的选泵,让水泵工作在高效段是有效的手段,合理利用地形,减少污水的提升高度来降低水泵轴功率N也是有效的办法,定期对水泵进行维护,减少摩擦也可以降低电耗。 

 

 

2

沉砂池

 

 

采用平流沉砂,避免采用需要动力设备的沉砂池,如平流沉砂池。采用重力排砂,避免使用机械排砂,这些措施都可大大节省能耗。

 

 

3

初次沉淀池

 

 

初次沉淀池的能耗较低,主要能量消耗在排泥设备上,采用静水压力法无疑会明显降低能量的消耗。 

 

 

4

生物处理构筑物

 

 

国外的学者通过能耗和费用效益分析比较了生物处理工艺流程,他们认为处理设施大部分的能量消耗是发生在电机这类单一的设备上,因而节能应从提高全厂功率因数、选择高效机电设备及减少高峰用电要求等方面入手。他们提出的节能措施既包括改善电机的电气性能,也包括解决运转的工艺问题,还包括污水厂产物中的能量回收(Energy Recovery)。

 

曝气系统的能耗相当大,对曝气系统能耗能效的研究总是涉及到曝气设备的改造和革新。新型的曝气设备虽然层出不穷,但目前仍然可划分为2类:第1种是采用淹没式的多孔扩散头或空气喷嘴产生空气泡将氧气传递进水溶液的方法,第2种是采用机械方法搅动污水促使大气中的氧溶于水的方法。微孔曝气,曝气扩散头的布局和曝气系统的调节这些都是节能的有效措施。在传统活性污泥处理厂曝气池中辟出前端厌氧区,用淹没式搅拌器混合的节能、生物除磷方案。这一简单的改造可以节省近20%的曝气能耗,如果算上混合用能,节能也达到12%。自动控制系统的应用于污水处理节能,曝气系统进行阶段曝气,溶解氧存在浓度梯度,既减少了能耗,又可以改善处理效果,减少污泥量。

 

生物膜法处理工艺采用厌氧处理可以明显降低能量的消耗。 

 

 

5

二次沉淀池

 

 

二次沉淀池中对排泥设备的研究和排泥方式的改善是降低能耗的有效方法。 

 

 

6

污泥处理

 

 

污泥处理系统节能研究主要集中于污泥处理的能量回收。从污水污泥有机污染物中回收能量用于处理过程早在上世纪初就已投入实践,但能源危机之前一直不受重视。目前有两种回收途径:一是污泥厌氧消化气利用,一是污泥焚烧热的利用。 

 

消化气性质稳定、易于贮存,它可通过内燃机或燃料电池转化为机械能或电能,废热还可回收于消化污泥加热。因此利用消化气能解决污水厂不同程度的能量自给问题。林荣忱等人比较了沼气发电机和燃料电池两种利用形式,认为燃料电池能量利用率高,具有很好的发展前途。对消化气的大化利用是提高能效的主要方式。沼气发电机组并网发电的研究和应用在国内已有应用实例,是大型污水处理厂的沼气综合利用的可行途径。 

 

另外一种能量回收方式是将城市固体废物焚烧场建在污水处理厂旁,将固废与污水污泥一起焚烧,获得的电能用于处理厂的运转。 

 

城市污水处理的能耗分析研究与节能技术和手段的发展往往并不同步。由于污水处理能量平衡分析方法研究的欠缺,节能措施的制订和实施常常超前。而多数节能途径和手段常常由处理厂的操作管理人员结合各处理设施实际情况提出,具有经验性和个别性,不一定能适用于其他污水厂甚至是工艺相似的污水厂;另一方面,从广义上说,污水处理学科领域的技术创新、新材料和新设备的使用都蕴涵着节能增效的潜力,因而节能的途径和手段往往是很宽泛的。 

 

 

四.结论

 

 

污水处理是能源密集(energy intensity)型的综合技术。一段时期以来,能耗大、运行费用高一定程度上阻碍了我国城市污水处理厂的建设,建成的一些处理厂也因能耗原因处于停产和半停产状态。在今后相当长的一段时期内,能耗问题将成为城市污水处理的瓶颈。能否解决耗污水厂的能耗问题,合理进行能源分配,已经成为决定污水处理厂运行效益好坏的关键因素。能耗是否较低,也是未来新的污水处理厂可行性分析的决定性因素,开发能效较高的污水处理技术,合理设计及运行污水处理厂,必将是未来污水处理厂设计和运行的必由之路。

 



留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7

在线咨询
在线客服
咨询热线

15689262758

[关闭]