当前位置:网站首页产品展示污水处理设备IC厌氧反应器 > 滁州ic厌氧反应器优质生产厂家
滁州ic厌氧反应器优质生产厂家

滁州ic厌氧反应器优质生产厂家

简要描述:滁州ic厌氧反应器优质生产厂家
IC(internal circulation)反应器是新一代高效厌氧反应器,即内循环厌氧反应器,相似由2层UASB反应器串联而成,用于有机高浓度废水,如,玉米淀粉废水、柠檬酸废水、啤酒废水、土豆加工废水、酒精废水。

所属分类:IC厌氧反应器

更新时间:2019-07-11

访问次数:92

详细说明:

 

 

滁州ic厌氧反应器优质生产厂家

滁州ic厌氧反应器优质生产厂家

污水处理技术之废水反应基本原理

IC(internal circulation)反应器是新一代高效厌氧反应器,即内循环厌氧反应器,相似由2层UASB反应器串联而成,用于有机高浓度废水,如,玉米淀粉废水、柠檬酸废水、啤酒废水、土豆加工废水、酒精废水

IC 反应器当前在造纸行业应用较多的是用各类废纸作原料的造纸企业,处理的目的包括实现一般的达标排放,通过治理后的废水回用,从而达到节水和治污的双重目的。

 

所谓“好氧”:是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。好氧生物处理过程的生化反应方程式:

 

①分解反应(又称氧化反应、异化代谢、分解代谢) CHONS +O2 CO2 + H2O + NH3 + SO42- +¼+能量(有机物的组成元素)

 

②合成反应(也称合成代谢、同化作用) C、H、O、N、S +能量 C5H7NO2

 

③内源呼吸(也称细胞物质的自身氧化) C5H7NO2 + O2 CO2 + H2O + NH3 + SO42- +¼+能量在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示:细菌:C5H7NO2;真菌:C16H17NO6;藻类:C5H8NO2;原生动物:C7H14NO3分解与合成的相互关系:1)二者不可分,而是相互依赖的;a、分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b、分解过程是一个产能过程,合成过程则是一个耗能过程。2)对有机物的去除,二者都有重要贡献;3)合成量的大小,对后续污泥的处理有直接影响(污泥的处理费用一般可以占整个城市污水处理厂的40~50%)。不同形式的有机物被生物降解的历程也不同:一方面:结构简单、小分子、可溶性物质,直接进入细胞壁;结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液化成小分子有机物,再进入细胞内。另一方面:有机物的化学结构不同,其降解过程也会不同,如:糖类;脂类;蛋白质

二、影响好氧生物处理的主要因素

 

①溶解氧(DO):约1~2mg/l;

 

②水温:是重要因素之一,在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快;细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限度时,会有不可逆的破坏;适宜温度 15~30°C;>40°C或< 10°C后,会有不利影响。

 

③营养物质:细胞组成中,C、H、O、N约占90~97%;其余3~10%为无机元素,主要的是P;生活污水一般不需再投加营养物质;而某些工业废水则需要,一般对于好氧生物处理工艺,应按BOD : N : P = 100 : 5 : 1投加N和P;其它无机营养元素:K、Mg、Ca、S、Na等;微量元素:Fe、Cu、Mn、Mo、Si、硼等;

 

④pH值:一般好氧微生物的适宜pH在6.5~8.5之间;pH < 4.5时,真菌将占优势,引起污泥膨胀;另一方面,微生物的活动也会影响混合液的pH值。

 

⑤有毒物质(抑制物质):重金属;;H2S;卤族元素及其化合物;酚、醇、醛等;

 

⑥有机负荷率:污水中的有机物本来是微生物的食物,但太多时,也会不利于微生物;

 

⑦氧化还原电位:好氧细菌:+300 ~ 400 mV, 至少要求大于+100 mV;厌氧细菌:要求小于+100 mV,对于严格厌氧细菌,则<-100 mV,甚至<-300 mV。

 

第二节 废水厌氧生物处理原理

 

废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CO2的过程。

 

一、厌氧生物处理中的基本生物过程——阶段性理论

 

1、两阶段理论:20世纪30~60年代,被普遍接受的是“两阶段理论”*阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO2和H2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;

 

这些微生物的特点是:

 

1)生长速率快,

 

2)对环境条件的适应性(温度、pH等)强。第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);


产甲烷细菌的主要特点是:

 

1)生长速率慢,世代时间长;

 

2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。

 

2、三阶段理论对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质;厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;上世纪70年代,Bryant发现原来认为是一种被称为“奥氏产甲烷菌”的细菌,实际上是由两种细菌共同组成的,一种细菌首先把乙醇氧化为乙酸和H2(一种产氢产乙酸细菌),另一种细菌则利用H2和CO2产生CH4(一种真正意义上的产甲烷细菌——嗜氢产甲烷细菌);因而,Bryant提出了厌氧消化过程的“三阶段理论”:水解、发酵阶段:产氢产乙酸阶段:产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇等转化为乙酸、H2/CO2;产甲烷阶段:产甲烷菌利用乙酸和H2、CO2产生CH4;一般认为,在厌氧生物处理过程中约有70%的CH4产自乙酸的分解,其余的则产自H2和CO2。

 

3、四阶段理论(四菌群学说):几乎与Bryant提出“三阶段理论”的同时,又有人提出了厌氧消化过程的“四菌群学说”:实际上,是在上述三阶段理论的基础上,增加了一类细菌——同型产乙酸菌,其主要功能是可以将产氢产乙酸细菌产生的H2/CO2合成为乙酸。但研究表明,实际上这一部分由H2/CO2合成而来的乙酸的量较少,只占厌氧体系中总乙酸量的5%左右。总体来说,“三阶段理论”、“四阶段理论”是目前公认的对厌氧生物处理过程较全面和较准确的描述。

 

4、多阶段理论 但是,当利用厌氧生物处理工艺处理含有复杂有机物的时候,在厌氧反应器中发生的反应会远比上述“三阶段理论”、“四阶段理论”中所描述的反应过程复杂,可以参见“厌氧复杂体系示意图”。

 

二、厌氧消化过程中的主要微生物

 

主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。

 

1、发酵细菌(产酸细菌):

 

发酵产酸细菌的主要功能有两种:

 

①水解——在胞外酶的作用下,将不溶性有机物水解成可溶性有机物;

 

②酸化——将可溶性大分子有机物转化为脂肪酸、醇类等;主要的发酵产酸细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时回成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。

 

2、产氢产乙酸菌:产氢产乙酸细菌的主要功能是将各种高级脂肪酸和醇类氧化分解为乙酸和H2;为产甲烷细菌提供合适的基质,在厌氧系统中常常与产甲烷细菌处于共生互营关系。

 

3、产甲烷菌20世纪60年代Hungate开创了严格厌氧微生物培养技术之后,对产甲烷细菌的研究才得以广泛进行;产甲烷细菌的主要功能是将产氢产乙酸菌的产物——乙酸和H2/CO2转化为CH4和CO2,使厌氧消化过程得以顺利进行;主要可分为两大类:乙酸营养型和H2营养型产甲烷菌,或称为嗜乙酸产甲烷细菌和嗜氢产甲烷细菌;一般来说,在自然界中乙酸营养型产甲烷菌的种类较少,只有Methanosarcina(产甲烷八叠球菌)和Methanothrix(产甲烷丝状菌),但这两种产甲烷细菌在厌氧反应器中居多,特别是后者,因为在厌氧反应器中乙酸是主要的产甲烷基质,一般来说有70%左右的甲烷是来自乙酸的氧化分解;根据产甲烷菌的形态和生理生态特征,可将其分类如下:——的分类(Bergy’s细菌手册第九版),共分为:三目、七科、十九属、65种;产甲烷菌有各种不同的形态,常见的有:

 

①产甲烷杆菌;

 

②产甲烷球菌;

 

③产甲烷八叠球菌;

 

④产甲烷丝菌;等等。在生物分类学上,产甲烷菌(Methanogens)属于古细菌(Archaebacteria),大小、外观上与普通细菌(Eubacteria)相似,但实际上,其细胞成分特殊,特别是细胞壁的结构较特殊;在自然界的分布,一般可以认为是栖息于一些环境中(如地热泉水、深海火山口、沉积物等),但实际上其分布极为广泛,如污泥、瘤胃、昆虫肠道、湿树木、厌氧反应器等;产甲烷菌都是严格厌氧细菌,要求氧化还原电位在-150~-400mv,氧和氧化剂对其有很强的毒害作用;产甲烷菌的增殖速率很慢,繁殖世代时间长,可达4~6天,因此,一般情况下产甲烷反应是厌氧消化的限速步骤。

 

三、厌氧生物处理的影响因素

 

产甲烷反应是厌氧消化过程的控制阶段,因此,一般来说,在讨论厌氧生物处理的影响因素时主要讨论影响产甲烷菌的各项因素;主要影响因素有:温度、pH值、氧化还原电位、营养物质、F/M比、有毒物质等。

 

1、温度:温度对厌氧微生物的影响尤为显著;厌氧细菌可分为嗜热菌(或高温菌)、嗜温菌(中温菌);相应地,厌氧消化分为:高温消化(55°C左右)和中温消化(35°C左右);高温消化的反应速率约为中温消化的1.5~1.9倍,产气率也较高,但气体中甲烷含量较低;当处理含有病原菌和寄生虫卵的废水或污泥时,高温消化可取得较好的卫生效果,消化后污泥的脱水性能也较好;随着新型厌氧反应器的开发研究和应用,温度对厌氧消化的影响不再非常重要(新型反应器内的生物量很大),因此可以在常温条件下(20~25°C)进行,以节省能量和运行费用。

 

2、pH值和碱度:pH值是厌氧消化过程中的重要的影响因素;重要原因:产甲烷菌对pH值的变化非常敏感,一般认为,其适pH值范围为6.8~7.2,在<6.5或>8.2时,产甲烷菌会受到严重抑制,而进一步导致整个厌氧消化过程的恶化;厌氧体系中的pH值受多种因素的影响:进水pH值、进水水质(有机物浓度、有机物种类等)、生化反应、酸碱平衡、气固液相间的溶解平衡等;厌氧体系是一个pH值的缓冲体系,主要由碳酸盐体系所控制;一般来说:系统中脂肪酸含量的增加(累积),将消耗 ,使pH下降;但产甲烷菌的作用不但可以消耗脂肪酸,而且还会产生 ,使系统的pH值回升。碱度曾一度在厌氧消化中被认为是一个至关重要的影响因素,但实际上其作用主要是保证厌氧体系具有一定的缓冲能力,维持合适的pH值;厌氧体系一旦发生酸化,则需要很长的时间才能恢复。

 

3、氧化还原电位:严格的厌氧环境是产甲烷菌进行正常生理活动的基本条件;非产甲烷菌可以在氧化还原电位为+100~ -100mv的环境正常生长和活动;产甲烷菌的适氧化还原电位为-150~ -400mv,在培养产甲烷菌的初期,氧化还原电位不能高于-330mv;

 

4、营养要求:厌氧微生物对N、P等营养物质的要求略低于好氧微生物,其要求COD:N:P = 200:5:1;

 

多数厌氧菌不具有合成某些必要的维生素或氨基酸的功能,所以有时需要投加:①K、Na、Ca等金属盐类;

 

化学强化生物除磷污水处理工艺以除去污水中有机污染物和各种形态的磷为主,此污水处理工艺将化学除磷和生物除磷一体化,通过厌氧消化生物系统中活性污泥产生挥发性有机酸,作为聚磷菌生长的基质或称之为营养物,使聚磷菌在活性污泥中选择性增殖,并将其回流到生物系统中,使生物污水处理系统工作在高效除磷状态;同时污泥在厌氧条件下产生的磷释放,通过化学除磷消除。

 

这是一种高效市政污水处理工艺技术,满足了我国现阶段,为解决水体富营养化,需要在常规二级污水处理基础上进一步除磷的要求。

 

循环间歇曝气

 

我国经济发展水平各地相差较大,经济发展滞后的城市还不能拿出很多资金用于污水治理,因此,怎样利用有限的资金,降低环境污染,是很多城市政府面临的问题。在污水处理方面,直到不久前,一些城市还采用一级或一级强化处理工艺技术,出水达不到国家二级排放标准对除去有机污染物的要求。

 

循环间歇曝气工艺充分发挥高负荷氧化沟处理效率高的优点,又充分利用序批式活性污泥污水处理工艺出水好的特点,保证了系统出水达到国家污水排放一级标准在除去有机污染物方面的要求。在投资和运行费用上比通常以除去有机污染物为主的二级生物污水处理系统降低30%左右,是适合我国现阶段污水处理要求的工艺技术。

 

a) 适用于小规模污水生化处理,处理效果稳定可靠;

b) 结构紧凑,占地面积小;

c) 运行管理方便,运转方式灵活;

d) 可全部充份利用原有污水处理单元;

生物接触氧化一体化医院污水处理设备 

生物接触氧化法也称淹没式生物滤池,其主要特点是在反应器内设置填料作为微生物的载体,使反应器内保持一个相对高的保持量,进而可提高处理效率,其反应器可设计得相对较为紧凑,可大幅度减小反应器池容,减小占地面积。其反应原理为反应器内附着填料生长的生物膜的吸附、氧化等作用,将污水中有机污染物逐步氧化成二氧化碳、水和细胞物质,污水得到净化。同时控制氧化池内溶氧水平,保证污水中氨态氮由硝化细菌转化为硝态氮。

生物接触氧化法由于反应器内微生物量大,能耐受较大的水质冲击,较适用于医院污水这类偶有有毒有害物质排出的污水,故而可保持一个较稳定的处理效果。污泥龄长,污泥产量低,具已稳定处理,污泥产量低。重要的是设计的结构紧凑的生物处理池体可在很小的改建场地内进行布置,,并可在高程上有机结合。

一体化医院污水处理设备处理工艺设施简要说明

1、调节池 

主要作用:调节水量,均化水质,保证后续处理的稳定运行并有一定   的水解酸化作用,能去除部分杂质。

设计说明:因为医院污水的水质水量日变化较大,当这个变化大于生物处理部分的微生物所能承受的其生存环境变化的极限时,能导致微生物大量死亡甚至生物处理系统的崩溃。因此将水质水量均化后稳定在一定的数值内,保持微生物生存环境的稳定,才能确保生物处理系统的稳定运行。同时在调节池中添加部分厌氧生物,进行水解酸化,可以提高污水的可生化性。调节池每年启运一次。

停留时间:8-12h

数量:1座,利用现有池体。

调节池内设潜水排污泵一台,手液位控制运行,低水位自动停机,高液位自动开启污水泵。

配套设备:自吸无堵塞排污泵, 数量1台。

2、A级生物池

由于污水中的有机成分较高,BOD5/CODcr=0.4可生化性好,因此设计采用生物接触氧化法。

因为医院污水中有机氮含量高,在进行生物降解时会以氨氮的形式出现,所以排入水中的氨氮的指标会升高,而氨氮也是一个污染控制指标,因此在O级生物池前加A级生物池,A级生物池可利用回流的混合液中带入的硝酸盐和进水中的有机物碳源进行反硝化,使进水中NO2-、NO2-还原成N2达到脱氮作用,在去除有机物的同时降解氨氮值。

3、O级生物池

污水经A级池处理后,自流进入O级生物池,从而进入接触氧化阶段,即进入好氧处理。

O级生物池是一种生物膜法为主,兼有活性泥的生物处理装置,通过提供氧源,污水中的有机物被微生物所吸附、降解,使水质得到净化。

在设计过程中考虑接触氧化时间较长为宜,即4小时,内部设高比表面积弹性填料,填充率为70%,比表面积近600m2/m3,在设计面积负荷时也应充分考虑周围环境,能确保较好的处理效率。因此设计负荷应选择比较低的值:0.83kg/m3.日。填料使用寿命在15年。池内氧气由国内生产的潜水曝气机提供。气水比也同时考虑较高的值:12:1,曝气机采用电机和叶轮直接传动,利用叶轮旋转所产生的离心力排开周围水形成低压区吸入水流同时,在叶轮进口处制造真空而吸入空气,在混气室中气与水充分混合形成均匀的气水混合液,在离心力作用下快速排出。由于水流喷射极强,造成有效的水流循环,使空气被剪切成大量的微小气泡。极大提高了其表面积,且由于气泡上升缓慢使空气中大量的氧溶于水中,使得该机动力效率优于其它种类的曝气机。具有曝气气孔小,氧的利用率高等优点,与传统曝气形式相比,具有*的优点。

接触氧化是一种以生物膜法为主兼有活性污泥法的生物处理工艺。经过充分充氧的污水,浸没全部填料并以一定的速度流经填料,生满生物膜的填料表面经过与充氧的污水充分接触,使水中有机物得到吸附和降解,从而使污水得到进化。

本设计采用上先进的新型组合填料,不仅比表面积大,且水流特性优越。

由于大量微生物被固定在填料层表面,形成高浓度的污泥床,俗称生物膜,它具有较强的耐负荷冲击。

此种结构由于没有或极少量地产生悬浮性的活性污泥,因而不会产生污泥膨胀,这也是此法的一大特点。

由于填料骨架替代了活性污泥法中的悬浮性作用,因而不需大量污泥回流,此举大降低了运行管理程序。

 4、沉淀池

污水经过接触氧化后,夹带氧化过程中产生的少量的活性污泥及新陈代谢的生物膜,以及不能进行生物降解的少量固形物,进入二沉池进行固液分离。使水得到澄清排出。沉淀池采用竖流式,沉淀的污泥全部回流至污泥池作进一步消化减少剩余污泥。出水槽设计成可调液位的齿形集水槽,增加沉淀效果。

5、消毒池

有效消毒停留时间为60分钟以上。在本单元大肠杆菌和其它细菌得到较有效的杀灭,此时出水细菌个数<100个/L。

医院污水处理消毒设备

二氧化氯被世界卫生组织(WHO)确认为一种安全高效的强力杀菌剂(二氧化氯消毒杀菌能国约为氯的2.6倍),它对经水传播的病原微生物,包括耐氯性极强的病毒、芽孢及水路系统中的异养菌、硫酸盐还原菌和真菌等均有很好的消毒效果。二氧化氯的杀菌速度快,只要几分钟就可使杀菌率达到99%以上,二氧化氯还可以与污水中的部分有机物反应,降低污水的臭味,且不易生成三卤甲烷等致癌物质。消毒后形成的二氧化氯残余量可防止细菌的再度繁殖。

 



留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7

在线咨询
在线客服
咨询热线

15689262758

[关闭]